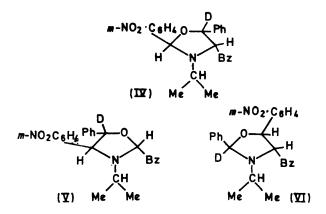

The Reaction of 2-Aroylaziridines with Aldehydes to form Oxazolidines

By G. Dallas, J. W. Lown,* and (in part) J. P. Moser


(Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada)

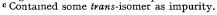
Summary 2-Aroylaziridines undergo thermal 1,3-dipolar addition via azomethine ylides to aromatic aldehydes and to chloral to give exclusively 4-aroyloxazolidines.

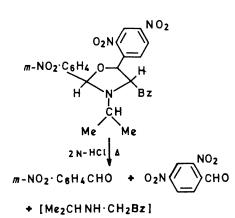
ADDITION reactions of substituted aziridines involving cleavage of the 2,3 bond to an azomethine ylide intermediate and subsequent [2+3] cycloaddition to carboncarbon and heteromultiple bonds are useful synthetic routes to pyrroles,¹⁻⁴ pyrrolines, ^{1,4} pyrrolidines ^{3,4} thiazolines,⁵ and imidazolidines.⁶ We report the analogous addition to the C=O bond of aldehydes to form oxazolidines, together with unambiguous proof of the structure and orientation of the 1,3-dipolar addition and stereochemistry. 2-Benzoyl-1-isopropyl-3-(3-nitrophenyl)aziridine' reacted with 1 equiv. of 2,4-dinitrobenzaldehyde in refluxing benzene to give the oxazolidine [I; $R^1 = m - NO_2$. $C_{6}H_{4}$, $R^{2} = Me_{2}CH$, $R^{3} = Ph$, $R^{4} = H$, $R^{5} = 2,4-(NO_{2})_{2}$. $C_{6}H_{3}$], (65%) m.p. 134-136°: ν_{max} (CHCl₃) 1678 (C=O), 1528 cm⁻¹ (NO₂)⁸; δ (CDCl₃, Me₄Si as standard) 0.85 (d, 3H, J 6.5 Hz), 1.12 [d, 3H, J 6.5 Hz, $(CH_3)_2CH$], 3.18-3.6 [m, 1H, $(CH_3)_2CH$], 6.42 (s, 1H, H²), 6.22 and 6.04 (AB quartet, 2H, J 5.7 Hz, cis, H^{4,5}), 7.17-8.88 (12H, ArH): mass spectrum; 196.0216 ($C_7H_4N_2O_5$; $M - C_{18}H_{18}N_2O_3$) calc. 196.0213; 310.1317 ($C_{18}H_{18}N_2O_3$; $M - C_7H_4N_2O_5$) calc. 310.1319. A series of similar oxazolidines synthesised from aryl aldehydes and chloral with the appropriate 2-aroylaziridine were assigned structures corresponding to cis- or

trans-(I) (see Table). The alternative structures (II) and (III) were discounted by the following experiments using specific deuterium labelling. Reaction of 2-benzoyl-1-isopropyl-3-(3-nitrophenyl)aziridine with PhCDO† gave a mixture of cis-(IV) and trans-(IV) in the ratio of 67:33.

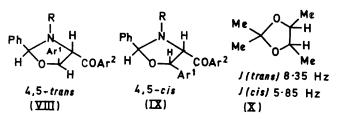
Both products showed sharp singlets in the n.m.r. at $6\cdot 20$ (1H, *cis*) and $6\cdot 10$ (1H, *trans*) (H²) and the original AB quartets in the protium analogues (*cis* centred at $5\cdot 42$ and $5\cdot 61$, J $5\cdot 7$ Hz; *trans* centred at $4\cdot 76$ and $5\cdot 32$, J $6\cdot 4$ Hz) were simplified to two sharp singlets at $5\cdot 43(1H)$ and $4\cdot 77(1H)$, thus eliminating structure (VI). Distinction between structures (IV) and (V) was made as follows. Reaction of 2-benzoyl-2-deuterio-1-isopropyl-3-(3-nitrophenyl)aziridine (85% labelled)⁹ and benzaldehyde gave the mixture of *cis*- and *trans*-oxazolidines (IV) where the deuterium is located unambiguously at the 4-position. The n.m.r. spectrum showed sharp singlets at $6\cdot 23(1H, cis)$ and $6\cdot 09(1H, trans)$ (H²) and the original AB quartets

† PhCDO (99.5%) was used because of its commercial availability (Merck, Sharp and Dohme, Montreal, Quebec).


CHEMICAL COMMUNICATIONS, 1970


	\mathbf{R}^{1}	\mathbf{R}^2	R ³	\mathbb{R}^4	R ⁵	М.р.	Yield (%)
(Ia) ^b	$m - NO_2 \cdot C_6 H_4$	C ₃ H ₇	\mathbf{Ph}	н	$2,4-(NO_2)_2 \cdot C_6H_3$	134136°	65
(Ib) ^b	m-NO2·C6H4	C ₃ H ₇	\mathbf{Ph}	p-NO ₂ ·C ₆ H ₄	H	133—135°	} 71
(Ic)b	$m - NO_2 \cdot C_6 H_4$	$C_{8}H_{7}$	\mathbf{Ph}	H	p-NO₂·C ₆ H₄	116—119°	
(Id)b	p-NO ₂ ·C ₆ H ₄	C_6H_{11}	\mathbf{Ph}	CCl ₃	H	$154 - 156^{\circ}$	78
(Ie) ^b	$m - NO_2 \cdot C_6 H_4$	$C_{6}H_{11}$	Ph	CCl ₃	H	$128 - 130^{\circ}$	72
(If) ^b	$m - NO_2 \cdot C_6 H_4$	C ₃ H ₇	Ph	Ph	H	$137 - 139^{\circ}$	} 48
(Ig) ^b	$m - NO_2 \cdot C_6 H_4$	C ₃ H ₇	\mathbf{Ph}	H	Ph	124—127°c]
(Ih)	\mathbf{Ph}	$C_{6}H_{11}$	\mathbf{Ph}	p-NO ₂ -C ₆ H ₄	H	oil	ca. 65

4-Avovloxazolidines


^a Satisfactory analytical data were obtained on all new compounds.

^b Signifies orientation of 1,3-dipolar addition confirmed by a parallel experiment with specifically 2-deuteriated aziridine.

observed in the protium analogues described above were modified to 5.46(0.3H) and 5.63(1H) for the *cis*-isomer and 4.76(0.3H) and 5.30(1H) for the trans-isomer, thus eliminating a structure of the type (II) and confirms the orientation of the 1,3-dipolar addition of the aldehyde as represented by (I). The orientation of four other additions checked with specifically 2-deuteriated aziridines confirmed the generality of this conclusion. Chemical confirmation of the structural assignments was made by acid hydrolysis of representative oxazolidines.¹⁰ For example, hydrolysis of oxazolidine (VII) with 2N-HCl afforded m-nitrobenzaldehyde and 2,4-dinitrobenzaldehyde identified as their 2,4dinitrophenylhydrazones. Reaction of p-nitrobenzaldehyde with stereoisomerically pure samples of cis- and trans-2-benzoyl-1-cyclohexyl-3-phenylaziridine¹¹ gave the identical trans-4,5-oxazolidine (Ih) in approximately the same yield. Similarly, addition of chloral to cis- or trans-2-benzoyl-1-cyclohexyl-3-(3-nitrophenyl)aziridine¹² gave one stereoisomerically pure trans-4,5-oxazolidine (Ie). Separate control experiments with the cis-4,5-oxazolidine (Ia) with (i) cyclohexylamine (ii) di-isopropylethylamine, and (iii) sodium methoxide showed no evidence of epimerisation at the 4-position. We conclude that owing to the sluggish dipolarophilic activity of the C=O bond,¹³ prior equilibration of the cis- and trans-azomethine ylide14 (from conrotatory thermal opening of the trans- and cis-aziridines respectively¹⁵) occurs and addition takes place exclusively via the trans-azomethine ylide. The isomeric oxazolidines were accordingly assigned the following stereochemistry (VIII) and (IX). The assignment of configuration about the 4,5-positions is tentatively based on the similarity to the n.m.r. proton couplings recorded for cis- and trans-2,2,4,5-tetramethyldioxolanes.¹⁶ The orientation of the addition of aldehydes to aziridines was exclusively in one direction [structure (I)] and is opposite to that assigned to

the only previously reported example of 1,3-dipolar addition of p-nitrobenzaldehyde to 1,1a-dihydro-1-(p-nitrophenyl)-2-phenylazirino[1,2-a]quinoxaline.¹⁷

In no case was a product corresponding to structure (III) encountered, in agreement with recent work¹⁸ which disproved a prior claim of formation of oxazolidines by prolonged heating of ethylenimine with aldehydes.

(Received, December 30th, 1969; Com. 1960.)

¹"A. Padwa and L. Hamilton, Tetrahedron Letters, 1965, 4363.

- ¹'A. Padwa and L. Hamilton, Tetrahedron Letters, 1965, 4363.
 ²'H. W. Heine, A. B. Smith, and J. D. Bower, J. Org. Chem., 1968, 33, 1097.
 ⁸ H. W. Heine, R. E. Peavy, and A. J. Durbetaki, J. Org. Chem., 1966, 31, 3924.
 ⁸ R. Huisgen, W. Scheer, G. Szeimies, and H. Huber, Tetrahedron Letters, 1966, 397.
 ⁵ J. W. Lown, G. Dallas, and T. W. Maloney, Canad. J. Chem., 1969, 47, 3557.
 ⁶ J. W. Lown, J. P. Moser, and R. Westwood, Canad. J. Chem., 1969, 47, 4335.
 ⁷ Prepared by the general method of Cromwell et al., ref. 11. Satisfactory analytical data were obtained.
 ⁸ L. J. Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, New York, 1958, p. 298.
 ⁹ This and similar 2-deuteriated aziridines were prepared by the general method detailed in ref. 6.
 ¹⁰ J. W. Cornforth in "Heterocyclic Compounds," ed. R. C. Elderfield, Wiley, New York, 1957, vol. 5, p. 391.
 ¹¹ N. H. Cromwell, N. G. Barker, R. H. Wankel, P. J. Vanderhorst, F. W. Olson, and J. H. Anglin, J. Amer. Chem. Soc., 1951, 73, 1044.
- 1044.
- ¹² J. W. Lown, R. K. Smalley, G. Dallas, and T. W. Maloney, Canad. J. Chem., 1970, 48, 89.

- ¹² J. W. Lown, K. K. Smalley, G. Dallas, and I. W. Maloney, Canaa. J. Chem., 1970, 48, 89.
 ¹³ R. Huisgen, Angew. Chem. Internat. Edn., 1963, 2, 565.
 ¹⁴ R. Huisgen, W. Scheer, H. Mader, and E. Brunn, Angew. Chem. Internat. Edn., 1969, 8, 604.
 ¹⁵ R. Huisgen, W. Scheer, and H. Huber, J. Amer. Chem. Soc., 1967, 89, 1753.
 ¹⁶ F. A. L. Anet, J. Amer. Chem. Soc., 1962, 84, 747.
 ¹⁷ H. W. Heine and R. P. Henzel, J. Org. Chem., 1969, 34, 171.
 ¹⁸ S. Hillers and M. Lidaks, Puti Sinteza i Izyskaniya Protivoopukholevykh Preparatov 1962, 193, Chem. Abs., 1963, 58, 4531.